Part Number Hot Search : 
PA1646 1N4148 3SK166A 15CH60 RFR3607 C35172 ESD5L5V F0515
Product Description
Full Text Search
 

To Download AD10226 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 a
FEATURES Two Independent 12-Bit, 125 MSPS ADCs Channel-to-Channel Isolation, > 80 dB AC-Coupled Signal Conditioning Included Gain Flatness up to Nyquist, < 0.1 dB Input VSWR 1.1:1 to Nyquist 80 dB Spurious-Free Dynamic Range Two's Complement Output Format 3.3 V or 5 V CMOS-Compatible Output Levels 1.5 W Per Channel Single-Ended or Differential Input 350 MHz Input Bandwidth APPLICATIONS Wireless and Wired Broadband Communications Base Stations and "Zero-IF" or Direct IF Sampling Subsystems Wireless Local Loop (WLL) Local Multipoint Distribution Service (LMDS) Radar and Satellite Subsystems
Dual-Channel, 12-Bit 125 MSPS IF Sampling A/D Converter AD10226
PRODUCT DESCRIPTION
The AD10226 offers two complete ADC channels with on-module signal conditioning for improved dynamic performance. Each wide dynamic range ADC has a transformer coupled front end optimized for direct-IF sampling. The AD10226 has on-chip track-and-hold circuitry and utilizes an innovative architecture to achieve 12-bit, 125 MSPS performance. The AD10226 uses innovative high density circuit design to achieve exceptional performance, while still maintaining excellent isolation and providing for board area savings. The AD10226 operates with 5.0 V analog supply and 3.3 V digital supply. Each channel is completely independent, allowing operation with independent ENCODE and analog inputs. The AD10226 is available in a 35 mm square 385-lead BGA package.
PRODUCT HIGHLIGHTS
1. Guaranteed sample rate of 125 MSPS 2. Input signal conditioning included with full-power bandwidth to 350 MHz 3. Industry-leading IF sampling performance
FUNCTIONAL BLOCK DIAGRAM
AIN A1 AIN A2 D0A (LSB) D1A D2A D3A D4A D5A D6A D7A D8A D9A D10A D11A (MSB) DFS_A SFDR_A ENCODEA ENCODEA REF_A_OUT REF_B_OUT ENCODEB ENCODEB 12 12 12 12 ADC ADC T/H T/H T1A T1B AIN B1 AIN B2 D0B (LSB) D1B D2B D3B D4B
50
50
AD10226
D5B D6B D7B D8B D9B D10B D11B (MSB) DFS_B SFDR_B
OUTPUT RESISTORS TIMING REF REF
OUTPUT RESISTORS TIMING
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 (c) Analog Devices, Inc., 2002
AD10226-SPECIFICATIONS
ELECTRICAL CHARACTERISTICS1 (V
Parameter RESOLUTION DC ACCURACY Differential Nonlinearity2 Integral Nonlinearity2 No Missing Codes Gain Error3 Output Offset Gain Tempco Offset Tempco ANALOG INPUT Input Voltage Range Input Impedance Input VSWR4 Analog Input Bandwidth, High Analog Input Bandwidth, Low ANALOG REFERENCE Output Voltage Load Current Tempco SWITCHING PERFORMANCE5 Maximum Conversion Rate Minimum Conversion Rate Duty Cycle Aperture Delay (tA) Aperture Uncertainty (Jitter) Output Valid Time (tV)6 Output Propagation Delay (tPD)6 Output Rise Time (tR) Output Fall Time (tF) DIGITAL INPUTS ENCODE Input Common-Mode Differential Input (ENC, ENC) Logic "1" Voltage Logic "0" Voltage Input Resistance Input Capacitance DIGITAL OUTPUTS Logic "1" Voltage6 Logic "0" Voltage6 Output Coding POWER SUPPLY7 Power Dissipation8 Power Supply Rejection Ratio Total I (DVDD) Current Total I (AVCC) Current Full Full Full 25C 25C Full Full 25C 25C Full Full Full 25C 25C Full Full Full Full 25C 25C Full Full 25C 25C Full Full Full Full Full 25C Full Full IV IV IV I I V V V V V IV IV V V V VI IV IV V V IV IV V V IV IV IV IV IV V IV IV 125 45 50 2.1 0.25 4.5 4.5 3.5 3.3 3.75 500 2.0 0.8 3 6 3 3.3 0 Two's Complement 3040 0.5 40 540 10 55 -0.99 -1.3 -9 -12 Temp
DD =
3.3 V, VCC = 5.0 V; ENCODE = 125 MSPS, unless otherwise noted.)
Test Level Min Typ 12 0.3 0.75 Guaranteed 1 +2 100 -50 1.84 50 1.1:1 350 +0.99 +1.3 +9 +12 Max Unit Bits LSB LSB % FS LSB ppm/C ppm/C V p-p Ratio MHz MHz V mA ppm/C MSPS MSPS % ns ps rms ns ns ns ns V mV V V k pF V V
1.25:1
300 1
2.5 5 80
3.0
6.0
3.1
0.2
Full Full Full Full
VI IV VI VI
3300 5.0 60 650
mW mV/V mA mA
-2-
REV. 0
AD10226
Parameter Temp Test Level Min Typ Max Unit DYNAMIC PERFORMANCE Signal-to-Noise Ratio (SNR)9 (Without Harmonics) fIN = 10.3 MHz 25C fIN = 49 MHz 25C 25C fIN = 71 MHz fIN = 121 MHz 25C fIN = 250 MHz 25C Signal-to-Noise Ratio (SINAD)10 (With Harmonics) 25C fIN = 10.3 MHz fIN = 49 MHz 25C fIN = 71 MHz 25C 25C fIN = 121 MHz fIN = 250 MHz 25C Spurious-Free Dynamic Range11 fIN = 10 MHz 25C 25C fIN = 41 MHz fIN = 71 MHz 25C fIN = 121 MHz 25C 25C fIN = 250 MHz Two-Tone Intermodulation Distortion12 (IMD) fIN = 29.3 MHz; fIN = 30.3 MHz 25C 25C fIN = 150 MHz; fIN = 151 MHz Channel-to-Channel Isolation13 fIN = 121 MHz Full
I V I V V I V I V V I V I V V
66.5 63
68.5 67 66 64 60 68 66.5 65 62.5 59.5 82 77 72 71 70
dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS dBFS
65.5 62.5
76.5 66
V V IV
78 70 85
dBc dBc dB
NOTES 1 All ac specifications tested by driving ENCODE and ENCODE differentially, with the analog input applied to A INX1 and A INX2 tied to ground. 2 SFDR enabled (SFDR = 1) for DNL and INL specifications. 3 Gain error measured at 10.3 MHz. 4 Input VSWR, see TPC 14. 5 See Figure 1, Timing Diagram. 6 tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 10 pF or a dc current of 40 A. 7 Supply voltages should remain stable within 5% for normal operation. 8 Power dissipation measures with encode at rated speed. 9 Analog input signal power at -1 dBFS; signal-to-noise (SNR) is the ratio of signal level to total noise (first six harmonics removed). ENCODE = 125 MSPS, SFDR mode = 1. SNR is reported in dBFS, related back to converter full-scale. 10 Analog input signal power at -1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. ENCODE = 125 MSPS. SINAD is reported in dBFS, related back to converter full-scale. 11 Analog input signal equals -1 dBFS; SFDR is ratio of converter full-scale to worst spur. 12 Both input tones at -7 dBFS; two-tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product. 13 Channel-to-channel isolation tested with A channel/50 terminated (AIN A2) grounded and a full-scale signal applied to B channel (A IN B2). Specifications subject to change without notice.
REV. 0
-3-
AD10226
ABSOLUTE MAXIMUM RATINGS* EXPLANATION OF TEST LEVELS
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V Analog Inputs . . . . . . . . . . . . . . . . . . . . . . 5 V p-p (18 dBm) Digital Inputs . . . . . . . . . . . . . . . . . . . -0.5 V to VDD + 0.5 V Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA Operating Temperature (Ambient) . . . . . . . -55C to +125C Storage Temperature (Ambient) . . . . . . . . . -65C to +150C Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150C
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
Test Level I 100% production tested II 100% production tested at 25C and sample tested at specific temperatures III Sample tested only IV Parameter is guaranteed by design and characterization testing V Parameter is a typical value only VI 100% production tested at 25C; guaranteed by design and characterization testing for industrial temperature range
Table I. Output Coding (VREF = 2.5 V) (Two's Complement)
THERMAL CHARACTERISTICS
Code +2047 * * 0 -1 * * -2048
AIN (V) +0.875 * * 0 -0.000427 * * -0.875
Digital Output 0111 1111 1111 * * 0000 0000 0000 1111 1111 1111 * * 1000 0000 0000
385-Lead BGA Package: The typical JA of the module as determined by an IR scan is 26.25C/W.
SAMPLE N 1 AIN
SAMPLE N
SAMPLE N 10
SAMPLE N 11
SAMPLE N 1
SAMPLE N 9
ENCODE ENCODE
1/f S
t PD tV
D11 D0 DATA N 11 DATA N 10 N9 N2 DATA N 1 DATA N DATA N 1
Figure 1. Timing Diagram
ORDERING GUIDE
Model AD10226AB AD10226/PCB
Temperature Range -25C to +85C (Ambient) 25C
Package Description 385-Lead BGA (35 mm 35 mm) Evaluation Board with AD10226AB
Package Option B-385
CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD10226 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
-4-
REV. 0
AD10226
PIN CONFIGURATION
25 24 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
35mm SQUARE BOTTOM VIEW
PIN FUNCTION DESCRIPTIONS
Mnemonic AGNDA REF_A_OUT NC AIN A1 AIN A2 AVCCA DGNDA D11A-D0A ENCODEA ENCODEA DVCCA DGNDB D11B-D0B AGNDB DVCCB ENCODEB ENCODEB REF_B_OUT AIN B1 AIN B2 AVCCB DFS SFDR Mode
Function A Channel Analog Ground. A and B grounds should be connected as close to the device as possible. A Channel Internal Voltage Reference No connection Analog Input for A side ADC (- input) Analog Input for A side ADC (+ input) Analog Positive Supply Voltage (nominally 5.0 V) A Channel Digital Ground Digital Outputs for ADC A. D0 (LSB) Complement of ENCODE Data conversion initiated on the rising edge of ENCODE input. Digital Positive Supply Voltage (nominally 3.3 V) B Channel Digital Ground Digital Outputs for ADC B. D0 (LSB) B Channel Analog Ground. A and B grounds should be connected as close to the device as possible. Digital Positive Supply Voltage (nominally 3.3 V) Complement of ENCODE Data conversion initiated on rising edge of ENCODE input. B Channel Internal Voltage Reference Analog Input for B side ADC (- input) Analog Input for B side ADC (+ input) Analog Positive Supply Voltage (nominally 5.0 V) Data format select. Low = Two's Complement, High = Binary. CMOS control pin that enables (SFDR MODE = 1) a proprietary circuit that may improve the spurious free dynamic range (SFDR) performance. It is useful in applications where the dynamic range of the system is limited by discrete spurious frequency content caused by nonlinearities in the ADC transfer function. SFDR Mode = 0 for normal operation. -5-
REV. 0
AD10226
385-LEAD BGA PINOUT Ball No.
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Signal Name
AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB
Ball No.
C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 E1 E2 E3 E4 E22 E23 E24 E25 F1 F2 F3 F4 F22 F23 F24 F25 G1 G2 G3 G4 G22 G23 G24 G25 H1 H2 H3 H4 H22 H23
Signal Name
AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AINA2 AINA1 AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB AINB2 AINB1 AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB
Ball No.
H24 H25 J1 J2 J3 J4 J22 J23 J24 J25 K1 K2 K3 K4 K10 K11 K12 K13 K14 K15 K16 K22 K23 K24 K25 L1 L2 L3 L4 L10 L11 L12 L13 L14 L15 L16 L22 L23 L24 L25 M1 M2 M3 M4 M10 M11 M12 M13 M14 M15 M16 M22 M23 M24 M25 N1 N2 N3 N4 N10 N11 N12 N13 N14 N15
Signal Name
AGNDB AGNDB AVCCA AVCCA AVCCA AVCCA REF_B_OUT REF_B_OUT REF_B_OUT REF_B_OUT AGNDA AGNDA AGNDA AGNDA SFDR_MODE_A AGNDA AGNDA DNC AGNDB AGNDB SFDR_MODE_B AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA DFS_A AGNDA AGNDA DNC AGNDB AGNDB DFS_B ENCBB ENCBB ENCBB ENCBB ENCAB ENCAB ENCAB ENCAB AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB ENCB ENCB ENCB ENCB ENCA ENCA ENCA ENCA GAIN_A AGNDA AGNDA DNC AGNDB AGNDB
Ball No.
N16 N22 N23 N24 N25 P1 P2 P3 P4 P10 P11 P12 P13 P14 P15 P16 P22 P23 P24 P25 P25 R1 R2 R3 R4 R10 R11 R12 R13 R14 R15 R16 R22 R23 R24 R25 T1 T2 T3 T4 T10 T11 T12 T13 T14 T15 T16 T22 T23 T24 T25 U1 U2 U3 U4 U22 U23 U24 U25 V1 V2 V3 V4 V22 V23
Signal Name
AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB DVCCB DVCCB DVCCB DVCCB DVCCB DVCCA DVCCA DVCCA DVCCA AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB DB0 DB0 DB0 DB0 DA11 DA11 DA11 DA11 AVCCA AGNDA AGNDA DNC AVCCB GAIN_B AGNDB DB1 DB1 DB1 DB1 DA10 DA10 DA10 DA10 DB2 DB2 DB2 DB2 DA9 DA9 DA9 DA9 DB3 DB3
Ball No.
V24 V25 W1 W2 W3 W4 W22 W23 W24 W25 Y1 Y2 Y3 Y4 Y22 Y23 Y24 Y25 AA1 AA2 AA3 AA4 AA22 AA23 AA24 AA25 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB24 AB25 AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12
Signal Name
DB3 DB3 DA8 DA8 DA8 DA8 DB4 DB4 DB4 DB4 DA7 DA7 DA7 DA7 DB5 DB5 DB5 DB5 DGNDA DGNDA DGNDA DGNDA DGNDB DGNDB DGNDB DGNDB OVRA OVRA OVRA OVRA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB OVRB OVRB OVRB OVRB DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0
Ball Signal No. Name
AC13 AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 AD21 AD22 AD23 AD24 AD25 AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18 AE19 AE20 AE21 AE22 AE23 AE24 AE25 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB
-6-
REV. 0
AD10226
385-LEAD BGA PINOUT (Top View, PCB Footprint)
1 2 3 4 5 6 7 8
DNC DNC DNC
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
A AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC B AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC C AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC
AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC
DNC AGNDB AGNDB AGNDB AGNDB AGNDB DNC AGNDB AGNDB AGNDB AGNDB AGNDB DNC AGNDB AGNDB AGNDB AGNDB AGNDB
D AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AINA2 AINA1 AGNDA AVCCA REF_A_OUT AGNDA DNC AGNCB AGNCB AVCCB AGNCB AVCCB AINB2 AINB1 AGNDB AGNDB AGNDB AGNDB AGNDB E AGNDA AGNDA AGNDA AGNDA F AGNDA AGNDA AGNDA AGNDA G AGNDA AGNDA AGNDA AGNDA H AGNDA AGNDA AGNDA AGNDA J AVCCA AVCCA AVCCA AVCCA K AGNDA AGNDA AGNDA AGNDA L AGNDA AGNDA AGNDA AGNDA M ENCAB ENCAB ENCAB ENCAB N
ENCA ENCA ENCA ENCA
SFDR Mode A DFS_A AGNDA AGNDA AGNDA AGNDA AVCCB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA SFDR AGNDA DNC AGNDB AGNDB Mode B AGNDA DNC AGNDB AGNDB DFS_B AGNDA DNC AGNDB AGNDB AGNDB AGNDA DNC AGNDB AGNDB AGNDB AGNDA DNC AGNDB AGNDB AGNDB AGNDA DNC AGNDB AGNDB AGNDB AGNDA DNC AVCCB AGNDB AGNDB
AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB
REF_B_OUT REF_B_OUT REF_B_OUT REF_B_OUT
AGNDB AGNDB AGNDB AGNDB ENCBB ENCBB ENCBB ENCBB ENCB ENCB ENCB ENCB
AGNDB AGNDB AGNDB AGNDB DVCCB DVCCB DVCCB DVCCB DB0 DB1 DB2 DB3 DB4 DB5 DB0 DB1 DB2 DB3 DB4 DB5 DB0 DB1 DB2 DB3 DB4 DB5 DB0 DB1 DB2 DB3 DB4 DB5
P AGNDA AGNDA AGNDA AGNDA R DVCCA DVCCA DVCCA DVCCA T U V W Y DA11 DA11 DA11 DA11 DA10 DA10 DA10 DA10 DA9 DA8 DA7 DA9 DA8 DA7 DA9 DA8 DA7 DA9 DA8 DA7
AA DGNDA DGNDA DGNDA DGNDA AB
OVRA OVRA OVRA OVRA DGNDA
DGNDB DGNDB DGNDB DGNDB
DA6 DA6 DA6 DA6
DA5 DA5 DA5 DA5
DA4 DA4 DA4 DA4
DA3 DA3 DA3 DA3
DA2 DA2 DA2 DA2
DA1 DA1 DA1 DA1
DA0 DA0 DA0 DA0
DGNDA DGNDB DB11 DB10 DGNDA DGNDB DB11 DB10 DGNDA DGNDB DB11 DB10 DGNDA DGNDB DB11 DB10
DB9 DB9 DB9 DB9
DB8 DB8 DB8 DB8
DB7 DB7 DB7 DB7
DB6 DGNDB OVRB
OVRB
OVRB
OVRB
AC DGNDA DGNDA DGNDA DGNDA DGNDA AD DGNDA DGNDA DGNDA DGNDA DGNDA AE DGNDA DGNDA DGNDA DGNDA DGNDA DNC = DO NOT CONNECT
DB6 DGNDB DGNDB DGNDB DGNDB DGNDB DB6 DGNDB DGNDB DGNDB DGNDB DGNDB DB6 DGNDB DGNDB DGNDB DGNDB DGNDB
REV. 0
-7-
AD10226 - Typical Performance Characteristics
0 10 20 30 40 50 0
ENCODE = 125MSPS AIN = 10.3MHz (-1dBFS) SNR = 68.19dBFS SFDR = 85.13dBFS
10 20 30 40 50
ENCODE = 125MSPS AIN = 121MHz (-1dBFS) SNR = 63.66dBFS SFDR = 79.28dBFS
dB
dB
60 70
80 90 100 110 120 130
60 70
80 90 100 110 120 130
0
5
10
15
20
25 30 35 40 FREQUENCY - MHz
45
50
55
60
0
5
10
15
20 25 30 35 40 FREQUENCY - MHz
45
50
55
60
TPC 1. Single Tone @ 10.3 MHz
TPC 4. Single Tone @ 121 MHz
0 10 20 30 40 50
0
ENCODE = 125MSPS AIN = 49MHz (-1dBFS) SNR = 67.12dBFS SFDR = 83.09dBFS
10 20 30 40 50
ENCODE = 125MSPS AIN = 240MHz (-1dBFS) SNR = 59.06dBFS SFDR = 74.56dBFS
dB
70
80 90 100 110 120 130
dB
5 10 15 20 25 30 35 40 FREQUENCY - MHz 45 50
60
60 70
80 90 100 110 120 130
0
55
60
0
5
10
15
20
25 30 35 40 FREQUENCY - MHz
45
50
55
60
TPC 2. Single Tone @ 49 MHz
TPC 5. Single Tone @ 240 MHz
0 10 20 30 40 50
0
ENCODE = 125MSPS AIN = 71MHz (-1dBFS) SNR = 66.2dBFS SFDR = 82.02dBFS
10 20 30 40 50
ENCODE = 125MSPS AIN = 29.3MHz AND 30.3MHz SFDR = 79.03dBFS
dB
70
80 90 100 110 120 130
dB
60
60 70
80 90 100 110 120 130
0
5
10
15
20
25 30 35 40 FREQUENCY - MHz
45
50
55
60
0
5
10
15
20
25 30 35 40 FREQUENCY - MHz
45
50
55
60
TPC 3. Single Tone @ 71 MHz
TPC 6. Two Tone @ 29/30 MHz
-8-
REV. 0
AD10226
0 10 20 30 40 50
1.0
3.0
ENCODE = 125MSPS AIN = 150MHz AND 151MHz SFDR = 75.38dBFS
2.0
ENCODE = 125MSPS INL MIN = 0.610 INL MAX = 0.702
LSB
dB
60 70
80 90 100 110 120 130
0.0
1.0
2.0
3.0
0
5
10
15
20 25 30 35 40 FREQUENCY - MHz
45
50
55
60
0
512
1024
1536
2048
2560
3072
3584
4096
OUTPUT CODES
TPC 7. Two Tone @ 150/151 MHz
TPC 10. Integral Nonlinearity
0 10 20 30 40
0
ENCODE = 125MSPS AIN = 240MHz AND 241MHz SFDR = 67dBFS
1
2
dB
60 70
80 90 100 110 120 130
GAIN - dB
50
3
4
5
6
0
5
10
15
20 25 30 35 40 FREQUENCY - MHz
45
50
55
60
10
100 FREQUENCY - MHz
1000
TPC 8. Two Tone @ 240/241 MHz
TPC 11. Frequency Response
3.0 2.5 2.0
1.5
0
ENCODE = 125MSPS DNL MIN = 0.530 DNL MAX = 0.369
GAIN - dB
LSB
1.0 0.5 0.0 0.5 1.0
1
2
0
512
1024
1536
2048
2560
3072
3584
4096
10
OUTPUT CODES
100 FREQUENCY - MHz
1000
TPC 9. Differential Nonlinearity
TPC 12. Gain Flatness*
*Gain flatness measurement is performed by applying a constant voltage at the device input.
REV. 0
-9-
AD10226
10 9 8 7
1MHz 10MHz 50MHz 100MHz 140MHz 160MHz 200MHz
= 1.010 = 1.028 = 1.045 = 1.066 = 1.090 = 1.126 = 1.170
GAIN - dB
10MHz 50MHz 100MHz 150MHz 200MHz 250MHz 300MHz = 52.22 - j0.421 = 50.69 - j2.84 = 47.50 - j3.58 = 44.61 - j0.970 = 43.70 + j3.70 = 46.41 + j9.48 = 53.09 + j14.76
6 5 4 3 2 1
0 0.1
1
10 FREQUENCY - MHz
100
1000
TPC 13. Input Impedance S11
TPC 14. Voltage Standing Wave Ratio (VSWR)
Equivalent Circuits
VCC VCC VCC 8k 8k Q1 NPN
ENCODE
ENCODE
24k
24k
VREF OUTPUT
Test Circuit 1. Equivalent ENCODE Input
Test Circuit 3. Equivalent Voltage Reference Output
VCC
VCC
3.75k AIN2
100 DIGITAL OUTPUT
3.75k
50 AIN1 15k 15k
Test Circuit 2. Equivalent Digital Output
Test Circuit 4. Equivalent Analog Input
DEFINITION OF TERMS Analog Bandwidth
Differential Nonlinearity
The deviation of any code from an ideal 1 LSB step.
ENCODE Pulsewidth/Duty Cycle
The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB.
Aperture Delay
The delay between the 50% point on the rising edge of the ENCODE command and the instant at which the analog input is sampled.
Aperture Uncertainty (Jitter)
Pulsewidth high is the minimum amount of time that the ENCODE pulse should be left in logic "1" state to achieve rated performance; pulsewidth low is the minimum time ENCODE pulse should be left in low state. At a given clock rate, these specs define an acceptable ENCODE duty cycle.
The sample-to-sample variation in aperture delay. -10- REV. 0
AD10226
Harmonic Distortion
The ratio of the rms signal amplitude to the rms value of the worst harmonic component.
Integral Nonlinearity
USING THE AD10226 ENCODE Input
The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a "best straight line" determined by a least square curve fit.
Minimum Conversion Rate
The ENCODE rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.
Maximum Conversion Rate
Any high speed A/D converter is extremely sensitive to the quality of the sampling clock provided by the user. A track/hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock will be combined with the desired signal at the A/D output. For that reason, considerable care has been taken in the design of the ENCODE input of the AD10226, and the user is advised to give commensurate thought to the clock source. The monolithic converter has an internal clock duty cycle stabilization circuit that locks to the rising edge of ENCODE (falling edge of ENCODE if driven differentially), and optimizes timing internally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. This circuit is always on and cannot be disabled by the user. The ENCODE and ENCODE inputs are internally biased to 3.75 V (nominal) and support either differential or single-ended signals. For best dynamic performance, a differential signal is recommended. Good performance is obtained using an MC10EL16 in the circuit to directly drive the encode inputs, as illustrated in Figure 2.
0.1 F PECL GATE 510 510 0.1 F
The ENCODE rate at which parametric testing is performed.
Output Propagation Delay
The delay between the 50% point of the rising edge of ENCODE command and the time when all output data bits are within valid logic levels.
Power Supply Rejection Ratio
The ratio of a change in output offset voltage to a change in power supply voltage.
Signal-to-Noise-and-Distortion (SINAD)
The ratio of the rms signal amplitude (set at 1 dB below full-scale) to the rms value of the sum of all other spectral components, excluding the first six harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels are lowered) or in dBFS (always related back to converter full-scale).]
Signal-to-Noise Ratio (without Harmonics)
AD10226
ENCODE ENCODE
The ratio of the rms signal amplitude (set at 1 dB below full-scale) to the rms value of the sum of all other spectral components, excluding the first six harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels are lowered) or in dBFS (always related back to converter full-scale).]
Spurious-Free Dynamic Range
GND
Figure 2. Using PECL to Drive ENCODE Inputs
The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full-scale).]
Two-Tone Intermodulation Distortion Rejection
Often, the cleanest clock source is a crystal oscillator producing a pure, single-ended sine wave. In this configuration, or with any roughly symmetrical, single-ended clock source, the signal can be ac-coupled to the ENCODE input. To minimize jitter, the signal amplitude should be maximized within the input range described in the Table II.
Table II. ENCODE Inputs
The ratio of the rms value of either input tone to the rms value of the worst third order intermodulation product; reported in dBc.
Voltage Standing Wave Ratio (VSWR)
Description Differential Signal Amplitude (VID) Input Voltage Range (VHID, VILD, VHIS) Internal Common-Mode Voltage (VICM) External Common-Mode Bias (VECM)
Min 200 mV -5 V
Nom 750 mV
Max 5.5 V VCC + 0.5 V
The ratio of the amplitude of the electric field at a voltage maximum to that at an adjacent voltage minimum.
APPLICATION NOTES Theory of Operation
3.75 V 2.0 V 4.25 V
The AD10226 is a high-dynamic-range dual 12-bit, 125 MHz subrange pipeline converter that uses switched capacitor architecture. The analog input section uses AINA2/B2 at 1.84 V p-p with an input impedance of 50 . The analog input includes an ac-coupled wideband 1:1 transformer, which provides high dynamic range and SNR while maintaining VSWR and gain flatness. The ADC includes a high bandwidth linear track/hold that gives excellent spurious performance up to and beyond the Nyquist rate. The high bandwidth track/hold has a low jitter of 0.25 ps rms, leading to excellent SNR and SFDR performance. AC-coupled differential PECL/ECL encode inputs are recommended for optimum performance. REV. 0
0.1 F 0.1 F
AD10226
ENCODE
50 SINE SOURCE
ENCODE 50 50 50
Figure 3. Single-Ended 50 Sine Encode Circuit
The 10 k resistors to ground at each of the inputs, in parallel with the internal bias resistors, set the common-mode voltage to ~ 2.5 V, -11-
AD10226
allowing the maximum swing at the input. The ENCODE input should be bypassed with a capacitor to ground to reduce noise. This ensures that the internal bias voltage is centered on the encode signal (Figure 3). For best dynamic performance, impedances at ENCODE and ENCODE should match. Figure 4 shows another preferred method for clocking the AD10226. The clock source (low jitter) is converted from single-ended to differential using an RF transformer. The back-to-back Schottky diodes across the transformer secondary limit clock excursions into the AD10226 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to the other portions of the AD9433, and limits the noise presented to the ENCODE inputs. A crystal clock oscillator can also be used to drive the RF transformer if an appropriate limiting resistor (typically 100 ) is placed in the series with the primary.
0.1 F 100 CLOCK SOURCE
Digital Outputs
The digital outputs are 3.3 V (2.7 V to 3.6 V) TTL/CMOScompatible for lower power consumption. The output data format is selectable through the data format select (DFS) CMOS input. DFS = 1 selects offset binary coding (Table III); DFS = 0 selects Two's Complement coding (Table IV).
Table III. Offset Binary Output Coding (DFS = 1, VREF = 2.5 V)
Code 4095 * * 2048 2047 * * 0
AIN - AIN (V) Range = 2 V p-p +0.92 * * 0 -0.00045 * * -0.92
Digital Output 1111 1111 1111 * * 1000 0000 0000 0111 1111 1111 * * 0000 0000 0000
AD10226
ENCODE
ENCODE
Table IV. Two's Complement Output Coding (DFS = 0, VREF = 2.5 V)
Figure 4. Double-Ended 50 Sine Encode Circuit
ENCODE Voltage Level Definition
Code +2047 * * 0 -1 * * -2048
Voltage Reference
AIN - AIN (V) Range = 2 V p-p +0.92 * * 0 -0.00045 * * -0.92
Digital Output 0111 1111 1111 * * 0000 0000 0000 1111 1111 1111 * * 1000 0000 0000
The voltage level definitions for driving ENCODE and ENCODE in differential mode is shown in Figure 6.
ENCODE ENCODE VIHD VIHS V ILS VILD VIHS VIHS V ILS VILS VID
ENCODE ENCODE 0.1 F
A stable and accurate 2.5 V voltage reference is designed into the AD10226 (VREFOUT). An external voltage reference is not required.
Timing
Figure 5. Differential Input Levels
Analog Input
The analog input is a single-ended ac-coupled high performance 1:1 transformer with an input impedance of 50 to 350 MHz. The nominal full scale input is 1.87 V p-p. Special care was taken in the design of the analog input section of the AD10226 to prevent damage and corruption of data when the input is overdriven.
SFDR Optimization
The AD10226 provides latched data outputs, with 10 pipeline delays. Data outputs are available one propagation delay (tPD) after the rising edge of the ENCODE command (see Figure 1). The length of the output data lines and loads placed on them should be minimized to reduce transients within the AD10226; these transients can detract from the converter's dynamic performance. The minimum guaranteed conversion rate of the AD10226 is 10 MSPS. At internal clock rates below 10 MSPS, dynamic performance may degrade. Therefore, input clock rates below 10 MHz should be avoided.
GROUNDING AND DECOUPLING Analog and Digital Grounding
The SFDR MODE pin enables (SFDR MODE = 1) a proprietary circuit that may improve the spurious-free dynamic range (SFDR) performance of the AD10226. It is useful in applications where the dynamic range of the system is limited by discrete spurious frequency content caused by nonlinearities in the ADC transfer function.
Proper grounding is essential in any high-speed, high resolution system. Multilayer printed circuit boards (PCBs) are recommended Enabling this circuit will give the circuit a dynamic transfer function, to provide optimal grounding and power schemes. The use of meaning that the voltage threshold between two adjacent output ground and power planes offers distinct advantages: codes may change from clock cycle to clock cycle. While improv1. The minimization of the loop area encompassed by a signal ing spurious frequency content, this dynamic aspect of the transfer and its return path. function may be inappropriate for some time domain applications 2. The minimization of the impedance associated with ground of the converter. Connecting the SFDR Mode pin to ground will and power paths. disable this function. The Typical Performance Characteristics section of the data sheet illustrates the improvement in the linearity 3. The inherent distributed capacitor formed by the powerplane, of the converter and its effect on spurious-free dynamic range. PCB insulation, and ground plane. -12- REV. 0
AD10226
These characteristics result in both a reduction of electromagnetic interference (EMI) and an overall improvement in performance. It is important to design a layout that prevents noise from coupling to the input signal. Digital signals should not be run in parallel with input signal traces and should be routed away from the input circuitry. The PCB should have a ground plane covering all unused portions of the component side of the board to provide a low impedance path and manage the power and ground currents. The ground plane should be removed from the area near the input pins to reduce stray capacitance.
Solder Reflow Profile LAYOUT INFORMATION
The Solder Reflow Profile for the AD10226 is shown in Figure 6.
250
The schematic of the evaluation board (Figures 7a-7d) represents a typical implementation of the AD10226. The pinout of the AD10226 is very straightforward and facilitates ease of use and the implementation of high-frequency/high resolution design practices. It is recommended that high quality ceramic chip capacitors be used to decouple each supply pin to ground directly at the device. All capacitors can be standard high quality ceramic chip capacitors. Care should be taken when placing the digital output runs. Because the digital outputs have such a high slew rate, the capacitive loading on the digital outputs should be minimized. Circuit traces for the digital outputs should be kept short and connect directly to the receiving gate. Internal circuitry buffers the outputs of the AD9433 ADC through a resistor network to eliminate the need to externally isolate the device from the receiving gate.
EVALUATION BOARD
200
TEMPERATURE - C
150
100
50
0 0 50 100 150 200 250 TIME - Seconds 300 350 400
Figure 6. Typical Solder Reflow Profile
The AD10226 evaluation board (Figures 7a-7d) is designed to provide optimal performance for evaluation of the AD10226 analog-to-digital converter. The board encompasses everything needed to ensure the highest level of performance for evaluating the AD10226. The board requires an analog input signal, an ENCODE clock and power supply inputs. The clock is buffered on-board to provide clocks for the latches. The digital outputs and out clocks are available at the standard 40-pin connectors J1 and J2. Power to the analog supply pins is connected via banana jacks. The analog supply powers the associated components and analog section of the AD10226. The digital outputs of the AD10226 are also powered via banana jacks with 3.3 V. Contact the factory if additional layout or application assistance is required.
BILL OF MATERIALS LIST FOR AD10226 EVALUATION BOARD Quantity 2 1 2 4 8 32 23 2 2 4 4 8 2 10 8 4 4 1 2 6 Reference Designator U16, U17 U1 U14, U15 R38, R39, R56, R58 R1, R7, R8, R41, R60, R61, R71, R72 R3, R4, R9-R18, R23-R30, R35, R36, R40, R42-R46, R63-R66 C1, C2, C5-C10, C12, C16-C18, C20-C26, C28, C33-C35 C13, C27 J1, J2 L1, L2, L3, L4 U2, U3, U9, U11 E3-E6, E25, E26, E33, E34 U4, U10 C3, C4, C11, C14, C15, C19, C29, C30-C32 J3-J7, J10-J12 33 k 51 100 0.1 F Value Description IC, Low Voltage 16-Bit D-Type Flip-Flop with 5 V Tolerant Inputs and Outputs IC, BGA 35 35 385 IC, Precision Low Dropout any CAP Voltage Regulator RES 33 k 1/10W 0.1% 0805 SMD RES 51 1/10W 5% 0805 SMD RES 100 1/10W 1% 0805 SMD CAP 0.1 F 50 V Ceramic Y5V 0805 Part Number 74LCX16374MTD (Fairchild) AD10226AB ADP3330ART-3.3-RL7 (Analog) ERA-6YEB333V (Panasonic) ERJ-6GEYJ510V (Panasonic) ERJ-6ENF1000V (Panasonic) ECJ-2VF1H104Z (Panasonic) ECJ-2YF1E474Z (Panasonic) TSW-120-08G-D (Samtec) 2743019447 (Fair Rite) MC10EP16D (Motorola) 108-0740-001 (Johnson Company) SY100ELT23L (Micrel-Synergy) T491C106M016AS (KEMET) 142-0801-201 (Johnson Components Inc.)
0.47 F CAP 0.47 F 25 V Ceramic Y5V 0805 2 20 Male Connector Strip, 100 Centers 47 SMT Ferrite Bead IC, 3.3 V/5 V ECL Differential Receiver/Driver Power Jack, Banana Plug 3.3 V Dual Differential LVPECL-to-LVTTL Translator 10 F Solid Tantalum Chip Capacitor, 10 F, 16 V, 20% SMA PLUG 200Mil STR GOLD Spacer Aluminum, Hex M-F (Standoff) Nut Hex Stl #4-40 UNC-2B GS03983 Rev. A (PCB) CAP 0.047 F 25 V Ceramic Y5V 0603 RES 0 1/16 W 5% 0402
AD10201/AD10226 Evaluation Board C36, C37 JP3, JP4, JP6, JP8, JP9, JP12
0
ECJ-1VB1C473K ER J-2GEOR00
REV. 0
-13-
AD10226
R18 100 DUT_3.3VDA U16 R7 51 LATCHA MSB D11A D10A D9A D8A D7A D6A D5A D4A VCC VCC VCC VCC O15 O14 O13 O12 O11 O10 O9 O8 42 31 7 18 23 22 20 19 17 16 14 13 B11A MSB R17 100 B10A R16 100 B9A R40 100 R44 100 B7A R45 100 B6A R46 100 12 11 9 8 6 5 3 2 21 15 10 4 B5A R15 100 R14 100 R13 100 R24 100 R23 100 B0A LSB DGNDA B4A B3A B2A B1A DGNDA DGNDA B3A B2A B1A LSB B0A B8A MSB B11A B10A + C15 B9A 10 F 16V B8A B7A DGNDA B6A B5A R71 B4A 51 BUFLATA 3.3VDA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 J1 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
D3A D2A D1A LSB D0A
25 24 26 27 29 30 32 33 35 36 48 1 37 38 40 41 43 44 46 47 28 34 39 45
CP2 OE2 I15 I14 I13 I12 I11 I10 I9 I8 CP1 OE1 I7 I6 I5 I4 I3 I2 I1 I0 GND GND GND GND
O7 O6 O5 O4 O3 O2 O1 O0 GND GND GND GND
74LCX16374MTD DGNDA
R11 100 DUT_3.3VDB U17 R8 51 LATCHB MSB D11B D10B D9B D8B D7B D6B D5B D4B VCC VCC VCC VCC O15 O14 O13 O12 O11 O10 O9 O8 42 31 7 18 23 22 20 19 17 16 14 13 B11B MSB R10 100 B10B R30 100 B9B R29 100 R28 100 B7B R27 100 B6B R26 100 12 11 9 8 6 5 3 2 21 15 10 4 B5B R12 100 R9 100 R25 100 R36 100 R35 100 B0B LSB DGNDB B4B B3B B2B B1B DGNDB DGNDB B3B B2B B1B LSB B0B B8B MSB B11B B10B + C14 B9B 10 F 16V B8B B7B DGNDB B6B B5B R72 B4B 51 BUFLATB 3.3VDB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 J2 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
D3B D2B D1B LSB D0B
25 24 26 27 29 30 32 33 35 36 48 1 37 38 40 41 43 44 46 47 28 34 39 45
CP2 OE2 I15 I14 I13 I12 I11 I10 I9 I8 CP1 OE1 I7 I6 I5 I4 I3 I2 I1 I0 GND GND GND GND
O7 O6 O5 O4 O3 O2 O1 O0 GND GND GND GND
74LCX16374MTD DGNDB
Figure 7a. Evaluation Board Schematic
-14-
REV. 0
AD10226
E4 AGNDA 5VAA 1 47 + C3 10 F 16V
L3 2 5VAA AINA1 @ 100MHz C20 0.1 F + C11 10 F 16V JP1 J3 AINA1
E6
STITCHES TO TIE GROUNDS TOGETHER AGNDA E3 AGNDA AGNDA DGNDA DGNDA DGNDA AGNDA DGNDB AINA2 E42 E44 E48 E66 E67 E70 E72 E73 E76 E81 E41 E43 E47 E65 E68 E69 E71 E74 E75 E82 E78 E7 E10 E8 E1 E77 E12 E9 E11 E2 DGNDB DGNDB AGNDA AGNDB AGNDB
E5
AGNDB 5VAB 1 47 + C4 10 F 16V
L4 2 5VAB AINA2
J4
@ 100MHz C21 0.1 F + C19 10 F 16V
AGNDA J7 AINB2 AINB2
AGNDB E34
AGNDB
AGNDB
DGNDA E25 DGNDA 3.3VDA 1 47 + C29 10 F 16V L1 2 DUT_3.3VDA AINB1 @ 100MHz + C31 10 F 16V JP2 J6 AINB1 E29 E36 E38 E40 E45 E79 E84 DGNDB DGNDA E33 DGNDA AGNDB E30 E35 E37 E39 E46 E80 E83
AGNDA
C12 0.1 F
AGNDB
E26
DGNDB 3.3VDB 1 47 + C30 10 F 16V
L2 2 DUT_3.3VDB 5VAA + C32 10 F 16V DUT_3.3VDA DUT_3.3VDB
@ 100MHz
C16 0.1 F
C34 0.1 F
C10 0.1 F
C9 0.1 F
C18 0.1 F
C17 0.1 F
DGNDB
DGNDB
AGNDA
DGNDA
DGNDB
Figure 7b. Evaluation Board Schematic
REV. 0
-15-
AD10226
U14 5VAA 2 IN OUT NR ERR GND 4 C1 0.1 F R1 51 AGNDA AGNDA R56 33k 3.3VA 1 2 3 4 AGNDA U2 NC D D VBB VCC Q Q VEE 8 7 6 5 C13 0.1 F 25V R42 100 R43 100 C8 0.1 F ENCA C7 0.1 F ENCAB 1 5 3 3.3VA
6
SD
J5 ENCODE
MC10EP16D
AGNDA U3 R58 33k 3.3VDA C2 0.1 F R41 51 AGNDA AGNDA 1 2 3 4 J12 ENCA NC D D VBB VCC Q Q VEE 8 7 6 5 C6 0.1 F R3 100 3.3VDA
AGNDA
U4 1 2 3 R4 100 4 D0 D0 D1 D1 VCC Q Q GND 8 7 6 5
3.3VDA LATCHA E23 E19 C5 0.1 F BUFLATA
MC10EP16D
DGNDA DGNDA
SY100EPT23L
DGNDA
U15 5VAB 2 IN OUT NR ERR GND 4 C22 0.1 F R60 51 AGNDB AGNDB R38 33k 3.3VB 1 2 3 4 AGNDB U11 NC D D VBB VCC Q Q VEE 8 7 6 5 1 5 3
3.3VB
6
SD
J10 ENCODE
C24 0.1 F ENCBB
MC10EP16D
C27 0.47 F 25V
R63 100
R64 100
C28 0.1 F ENCB
AGNDB U9 R39 33k 3.3VDB C23 0.1 F R61 51 AGNDB AGNDB 1 2 3 4 J11 ENCB NC D D VBB VCC Q Q VEE 8 7 6 5 C25 0.1 F R65 100 3.3VDB
AGNDB
U10 1 2 3 R66 100 4 D0 D0 D1 D1 VCC Q Q GND 8 7 6 5
3.3VDB LATCHB E24 E22 C26 0.1 F BUFLATB
MC10EP16D
DGNDB DGNDB
SY100EPT23L
DGNDB
Figure 7c. Evaluation Board Schematic
-16-
REV. 0
AD10226
C33 0.1 F E49 AGNDA
AGNDA
C36 0.047 F
AGNDA
+5VAA
JP4
AGNDA
+5VAA
A1 A2 A3 A4 A5 A6 A9 A12 B1 B2 B3 B4 B5 B6 B9 B12 C1 C2 C3 C4 C5 C6 C9 C12 D1 D2 D3 D4 D5 D6 D9 D12 E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2 H3 H4 K1 K2 K3 K4 K10 K11 K12 L1 L2 L3 L4 L10 L11 L12 M10 M11 M12 N10 N11 N12 P1 P2 P3 P4 P10 P11 P12 R10 R11 R12 T10 T11 T12 AA1 AA2 AA3 AA4 AB5 AB13 AC1 AC2 AC3 AC4 AC5 AC13 AD1 AD2 AD3 AD4 AD5 AD13 AE1 AE2 AE3 AE4 AE5 AE13 AA22 AA23 AA24 AA25 AB14 AB21 AC14 AC21 AC22 AC23 AC24 AC25 AD14 AD21 AD22 AD23 AD24 AD25 AE14 AE21 AE22 AE23 AE24 AE25
AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB
OVRA OVRA OVRA OVRA D0A (LSBA) D0A (LSBA) D0A (LSBA) D0A (LSBA) D1A D1A D1A D1A D2A D2A D2A D2A D3A D3A D3A D3A D4A D4A D4A D4A D5A D5A D5A D5A D6A D6A D6A D6A D7A D7A D7A D7A D8A D8A D8A D8A D9A D9A D9A D9A D10A D10A D10A D10A D11A (MSBA) D11A (MSBA) D11A (MSBA) D11A (MSBA) ENCA ENCA ENCA ENCA ENCAB ENCAB ENCAB ENCAB AINA2 AINA2 AINA2 AINA2 AINA1 AINA1 AINA1 AINA1 REF_A REF_A REF_A REF_A
AB4 AB3 AB2 AB1 AE12 AD12 AC12 AB12 AE11 AD11 AC11 AB11 AE10 AD10 AC10 AB10 AE9 AD9 AC9 AB9 AE8 AD8 AC8 AB8 AE7 AD7 AC7 AB7 AE6 AD6 AC6 AB6 Y4 Y3 Y2 Y1 W4 W3 W2 W1 V4 V3 V2 V1 U4 U3 U2 U1 T4 T3 T2 T1 N4 N3 N2 N1 M4 M3 M2 M1 D7 C7 B7 A7 D8 C8 B8 A8 D11 C11 B11 A11
ENCAB
ENCA
OVRA
D10A
D11A
D0A
D1A
D2A
D3A
D4A
D5A
D6A
D7A
D8A
D9A
AINA2
AINA1
5VAA 5VAA 5VAA 5VAA 5VAA 5VAA 5VAA 5VAA 3.3VDA 3.3VDA 3.3VDA 3.3VDA SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD 3.3VDB 3.3VDB 3.3VDB 3.3VDB 5VAB 5VAB 5VAB 5VAB 5VAB 5VAB 5VAB 5VAB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB
J1 J2 J3 J4 A10 B10 C10 D10 R1 R2 R3 R4 A13 B13 C13 D13 K13 L13 M13 N13 P13 R13 T13 P22 P23 P24 P25 A16 B16 C16 D16 A18 B18 C18 D18 A14 A15 A17 A21 A22 A23 A24 A25 B14 B15 B17 B21 B22 B23 B24 B25 C14 C15 C17 C21 C22 C23 C24 C25 D14 D15 D17 D21 D22 D23 D24 D25 E22 E23 E24 E25 F22 F23 F24 F25 G22 G23 G24 G25 H22 H23 H24 H25 K14 K15 K16 K22 K23 K24 K25 L14 L15 L16 M14 M15 M16 N14 N15 N16 N22 N23 N24 N25 P14 P15 P16 R14 R15 R16 T14 T15 T16
+5VAA
DUT_3.3VDA
DUT_3.3VDB
+5VAB
+5VAA
JP3
AGNDA
+5VAA
AD10226
JP6
AGNDA
DGNDA
+5VAB
JP8
+5VAB
AGNDB
C37 0.047 F
JP9
AGNDB
DGNDB
+5VAB
JP12
+5VAB
ENCBB
ENCB
OVRB
D11B
D10B
D9B
D8B
D7B
D6B
D5B
D4B
D3B
D2B
D1B
D0B
AINB1
C35 AGNDB 0.1 F
AINB2
AB25 AB24 AB23 AB22 AE15 AD15 AC15 AB15 AE16 AD16 AC16 AB16 AE17 AD17 AC17 AB17 AE18 AD18 AC18 AB18 AE19 AD19 AC19 AB19 AE20 AD20 AC20 AB20 Y25 Y24 Y23 Y22 W25 W24 W23 W22 V25 V24 V23 V22 U25 U24 U23 U22 T25 T24 T23 T22 R25 R24 R23 R22 M25 M24 M23 M22 L25 L24 L23 L22 J25 J24 J23 J22 D20 C20 B20 A20 D19 C19 B19 A19
OVRB OVRB OVRB OVRB D11B (MSBB) D11B (MSBB) D11B (MSBB) D11B (MSBB) D10B D10B D10B D10B D9B D9B D9B D9B D8B D8B D8B D8B D7B D7B D7B D7B D6B D6B D6B D6B D5B D5B D5B D5B D4B D4B D4B D4B D3B D3B D3B D3B D2B D2B D2B D2B D1B D1B D1B D1B D0B (LSBB) D0B (LSBB) D0B (LSBB) D0B (LSBB) ENCB ENCB ENCB ENCB ENCBB ENCBB ENCBB ENCBB REF_B REF_B REF_B REF_B AINB1 AINB1 AINB1 AINB1 AINB2 AINB2 AINB2 AINB2
AGNDB
E50
AGNDB
Figure 7d. Evaluation Board Schematic
REV. 0
-17-
AD10226
E5 +5VAB E3 AGNDB E37 E30 + C4 L4 C19 +
GND TIES
E33 DGNDB E38 E29 E1 L2 E35 J10 ENCB E80 E46 J11 E83 E36 E79 E45 E84 C32 + C16 C30 +
E26 +3.3VDB
J2
E2
ENCB
E22 BUFLATB LATCHB E24
E50 JP2 AINB2 E11
GNDTIE
J6
REF_B
E39
GNDTIE
J7 J3
AINB1 AINA1
E77
GNDTIE
R R 11 R 10 R 30 R 29 28 R R 27 R 26 12 R R9 25 R R 36 35
E12
GNDTIE
E49 E8 E47 REF_A JP1
E78
E7
J1
18 R 17 R 16 R 40 R 44 R 45 R 46 R 15 R 14 R 13 R 24 R 23 R
J4
U1
AINA2 ENCA E82 E65 J5 J12 E9 E41
GND TIES
GS03983 REV: A AD10201/ AD10206 EVALUATION BOARD
ENCA
E81 E66 E10 E42 E44 E67 E73 E72 E70 E76
BUFLATA E19 E23 LATCHA
L3
+ C11
C31 + L1 C29 +
E43 C3 + E68 E74 E71 E69 E6 +5VAA AGNDA E4 E75
C12 E34 DGNDA E25 +3.3VDA
Figure 8a. Mechanical Layout Top View
Figure 8c. Top View
+
GND TIES
C14
R72
R61 U10 C23 C26 R66 R65 C25 U9 R39 U11 R38 C27 R60 C22
C17 R8 U17
C18 C28 C24 C21
C37 JP8 JP3 C36
GNDTIE GNDTIE
R64 C35
JP9
R63
U15
GNDTIE
GNDTIE
+5V
JP6 JP4
JP12
U16
C20 C8
C33
C15 C9
C10 C7 R42 R7 U3 R4 R3
R43 C13
C34
R56
U14
U2
C1 R1
R58
C6 R71 C5 U4
GND TIES
Figure 8b. Mechanical Layout Bottom View
R41 C2
Figure 8d. Layer 2
-18-
REV. 0
AD10226
Figure 8e. Layer 3
Figure 8g. Ground View 2
Figure 8f. Ground View 1
REV. 0
-19-
AD10226
OUTLINE DIMENSIONS
Dimensions shown in millimeters (mm).
385-Lead Ball Grid Array (BGA)
(B-385)
C02927-0-5/02(0)
37.00 35.00 BSC SQ 33.00 DETAIL C
AD10201AB XXXX
24 22 20 18 16 14 12 10 8 6 4 2 25 23 21 19 17 15 13 11 9 7 5 3 1 A B C ED GF H J K L M NP RT U V W Y AA AB AC AD AE
30.48 BSC SQ
DETAIL A DETAIL B
1.27 TYP
1.15 1.02 0.89 0.90 0.75 0.60 DETAIL B
DETAIL A
0.75 0.60 0.50
DETAIL C
AD10201AB XXXX
COMPONENT VOLUME
3.20 MAX
-20-
REV. 0
PRINTED IN U.S.A.


▲Up To Search▲   

 
Price & Availability of AD10226

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X